
USING HIERARCHY OF PARTS FOR IMAGE CLASSIFICATION

Ondřej Nečas, David Bařina
Doctoral Degree Programme (1, 2), FIT BUT

E-mail: {xnecas14, xbarin02}@stud.fit.vutbr.cz

Supervised by: Adam Herout
E-mail: herout@fit.vutbr.cz

Abstract: In this paper, we describe a modified approach to extraction of edge sequences from an im-
age. These sequences (further referred as parts) comprise a hierarchical structure. Using a hierarchy
is generally more effective than other methods, but could lead to some particular difficulties.

Keywords: feature extraction, image classification, edge, hierarchy

1 INTRODUCTION

The procedure of object classification usually consists of two different tasks: extraction of image
features and determining the right class according to these features. We could use raw image data
and put it on the input of the classifier but it would be very computation demanding operation and
probably with worse results than using some sophisticated features. Someone could confuse object
classification and object detection. The main difference between these two is that in object detection
we usually need only a few models for representing one object class. On the other hand for object
classification we need significantly more object models. More models means more performance
demanding task and thus it is suitable to use some hierarchical structure to represent those models of
many distinctive classes.

In the following work we will describe a modified approach originally described in [2, 1]. Improved
features were later used for classification in [3]. Our approach is based on the same idea but we
are using slightly different technique how to accomplish similar results. This method is working on
statistical principle. We are searching for some common patterns which can be found in an image.
Therefore we are exploiting only geometrical information contained in that image. There are many
hierarchical approaches based on similar ground. For example in [5, 4] are building more complex
features upon Gabor filter responses on an image.

The purpose of image features is to describe the image by as few as possible values, and not to loose
much of an information. Approaches like SIFT [6] or its optimized version SURF [7] describe the
image by some carefully chosen keypoints, which are invariant to some common transformations.
Every keypoint is then represented by an array of local gradient directions histograms. The method
described below extracts greater amount of simpler features. These features are not necessarily sim-
pler as we advance to higher layers in the hierarchy. Therefore we can easily control the difficulty of
feature extraction with respect to speed or precision.

2 HIERARCHY OF PARTS

In this chapter will be described the principle of the algorithm starting by extracting edges from the
input image and building the hierarchy upon these edges. In the end will be described the detection
of the parts in an image.



2.1 EDGE EXTRACTION

The first phase of this algorithm is edge extraction. Grayscale image is filtered through series of
Gabor function convolution kernels. Each kernel is rotated by 45 or 30 degrees so we finally get 4
or 6 maps with responses in corresponding directions. Only the direction with highest response is
interesting for further processing. In the original work [2] were the authors using odd and even Gabor
filter banks. Computation of so many convolutions is very performance demanding task so we have
suggested some optimizations. We are computing convolution only with odd Gabor function and only
in two directions aligned with axis x and y. These kernels are also axis separable and therefore more
efficient to compute.

α = atan2(gx,gy) (1)

E =
√

g2
x +g2

y (2)

Angle and energy of each edge is acquired using equation (1) and (2), respectively. Where gx is re-
sponse in horizontal and gy in vertical direction. Now we have strength of an edge and corresponding
direction. We need to threshold the energy values to get rid of some insignificant edges and noise.
However there is still to much pixels to process and we need to suppress non-maximal values by
comparing actual pixel with its neighbours.

(a) Original image (b) Extracted edges (c) Detail

Figure 1: Example of original image and respective extracted edges.

2.2 LEARNING THE HIERARCHY

As we have acquired the L1 parts, we can continue building the hierarchy. The following procedure
applies to any layer in the hierarchy. At first we need to construct so-called spatial maps. Spatial map
is created for every combination of parts Pn

i and Pn
j . Spatial map represents the occurrence of other

parts Pn
j around part Pn

i . We cycle through all parts pn
i in the image and we increment counter at the

relative position of pn
j in the corresponding map (Pn

i , Pn
j ). Also we must avoid adding parts which

have greater overlap with central part. For that reason we carry list of corresponding pixels for every
part instance.

Afterwards we find maximum in every map. Maps with insignificant maximum are automatically
dismissed. Now we have compositions comprised of one central part Pn

i and one subpart Pn
j at relative

position from the central part. There could be found large amount of possible compositions, so
we push them on the stack sorted by the size of a maximum in spatial map. For each iteration of
building more complex compositions we pull out only a few of the best parts. Process of building



PartInstance (pn
i ) Part (Pn

i ) Subpart
<list> pixels (p1

i ) <list> links (Pn+1
i ) part (Pn−1

i )
position <list> subparts relative position
part (Pn

i ) index

Table 1: Data structures in layer n: Pn
i is part from library of parts, pn

i is part instance detected in
image.

more complex compositions continue in similar manner as above. We need to find all compositions
comprised of two subparts in all images and we again build spatial maps around them.

Detection of parts will be described in the next chapter. However we need to point out one important
difference in detection of parts in this phase. Parts detected in the ordinary way would share many of
the parts from the lower layer. Therefore we are accepting only those parts, which have some subparts
not shared among others.

Generally it is practical to use no more than 6 subparts. After finding all significant compositions com-
prised from up to k subparts there are some parts significantly close to others in regard of described
pixels. To reduce the amount of parts which do not contribute by any kind of useful information
we are grouping together parts describing the same sections of image. We are comparing the area
of pixels shared between different parts and when the area exceed some threshold we declare those
parts identical. In the process could be found clusters with more than one identical part, so we choose
the best one and throw away the others. Finally those chosen parts are added to the list of links in
corresponding part as indicated in table 1.

2.3 DETECTION OF PARTS

Similarly like in the process of learning we need firstly to obtain parts of L1. As was mentioned earlier
L1 parts are edges detected in an image in several directions. Every initial direction represents one
atomic part P1

i . And again we cycle through all parts pn
i in the image and for every part we have to

check the presence of any part Pn
i +1 from the list of links. The presence of a part Pn

i +1 is verified by
checking that all subparts of that part are present at their respective relative positions from the central
part.

Figure 2: Example of L4 parts learned on the dataset of keyboards.

In higher layers the radius of neighbourhood would get wider and it could lead to unreasonable mem-
ory demands. So we undersample the positions of parts by some factor in the process of building each
higher layer. This technique is used even in the learning process. Unlike in [1] we are not applying
additional sorting of parts after their detection in picture.



(a) L2 (1158) (b) L5 (591)

Figure 3: Visualization of detected parts: number of detected parts in corresponding layers.

3 IMAGE CLASSIFICATION AND RESULTS

For classification across many classes proceeds the learning process in the following way. Parts of
layer 2 are learned on all input images simultaneously. Parts of higher layers are learned per category.
For every category we choose several of the best parts and after going through all the categories are
the parts mixed together. Because in higher layers parts cover larger areas of an image and the number
of possible compositions is rapidly growing we decrease the maximum of subparts in compositions
in higher layers.

In this phase we can’t put on an input of the classifier the list of all parts detected in an image. The sim-
plest way of reducing the number of detected features is to export histogram of parts for every image.
To include a little more information we divide the picture in 3× 3 regions and generate histograms
of parts for every region. Adding overlap between regions yields some significant improvement. As
parts in higher layers cover greater area it is not necessary to divide the picture in so many regions.
Therefore the final feature vector is composed of divided histograms of L2 and global histograms of
higher layers.

Results were obtained by using linear SVM classifier [8]. Processing times per one image in the
following tables were measured on the AMD Phenom II 945 processor (3.0 GHz). As a typical
example of usage we chose a subset of scene dataset from [9]. In this dataset of 15 different categories
we can assess the picture as a whole, rather than finding the object of interest in a large picture. Results
show the relationship between processing time and corresponding score.

Average precision Number of parts
Threshold L2 L3 L4 L234 L2 L3 L4 t(s)
0.1 / 0.01 67.0 71.7 70.8 74.5 142 912 1592 4.4
0.07 / 0.007 67.2 69.4 66.6 70.7 139 890 1478 5.2
0.2 / 0.1 60.2 63.5 62.7 66.4 135 731 1832 2.7

Table 2: Results measured with different edge thresholds.

Setting the threshold too low can result in the longer processing time and no performance gain. With
higher threshold is the processing time significantly shorter, but also the performance is compromised.

Smaller resolution undersampling can give us slightly worse results paid off by shorter times.

4 CONCLUSION

In this paper we have described modified algorithm originally proposed in [2]. Besides optimization
of edge extraction procedure we used other significant simplifications that make this algorithm more



Average precision Number of parts
Factor L2 L3 L4 L234 L2 L3 L4 t(s)
3.0 67.0 71.7 70.8 74.5 142 912 1592 4.4
2.5 67.0 71.5 71.5 74.4 142 824 2014 3.5
2.0 67.0 71.2 71.3 73.8 142 771 2179 2.5

Table 3: Results measured with different factors for undersampling the higher layers.

suitable for implementation on GPGPU and other platforms. Similarly like in [3] we have demon-
strated successful use of our features in image classification. Several possibilities of further work
come into consideration. For example process the images on different scales could yield some signif-
icant improvement over actual results or using Bag of words model instead of simple histogram could
improve the results.

ACKNOWLEDGEMENT

This work has been supported by the EU FP7-ARTEMIS project SMECY (Smart Multicore Embed-
ded SYstems), grant no. 100230 and by the Ministry of Education, Youth and Sports of the Czech
Republic under the research program LC-06008 (Center for Computer Graphics).

REFERENCES

[1] Fidler, S., Leonardis, A.: Toward Scalable Representations of Object Categories: Learning a
Hierarchy of Parts, Computer Vision and Pattern Recognition, pp. 1-8, 2007

[2] Fidler, S., Berginc, G., Leonardis, A.: Hierarchical Statistical Learning of Generic Parts of
Object Structure, Computer Vision and Pattern Recognition, vol. 1, pp. 182-186, 2006

[3] Fidler, S., Boben, M., Leonardis, A.: Similarity-based cross-layered hierarchical representation
for object categorization, Computer Vision and Pattern Recognition, pp. 1-8, 2008

[4] Mutch, J., Lowe, D. G.: Object Class Recognition and Localization Using Sparse Features with
Limited Receptive Fields, International Journal of Computer Vision, vol. 80, no. 1, pp. 45-57,
2008

[5] Mutch, J., Lowe, D. G.: Multiclass Object Recognition with Sparse, Localized Features, Com-
puter Vision and Pattern Recognition, vol. 1, pp. 11-18, 2006

[6] Lowe, D. G.: Object Recognition from Local Scale-invariant Features, International Conference
on Computer Vision, vol. 2, pp. 1150, 1999

[7] Bay, H., Tuytelaars, T., Gool, L. V.: SURF: Speeded Up Robust Features, European Conference
on Computer Vision, vol. 3951, pp. 404-417, 2006

[8] Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-based image clas-
sification, Neural Networks, vol. 10, no. 5, pp. 1055-1064, 1999

[9] Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for
Recognizing Natural Scene Categories, Computer Vision and Pattern Recognition, vol. 2, pp.
2169-2178, 2006


